Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.622
Filtrar
1.
Acta Derm Venereol ; 104: adv188636, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551375

RESUMO

Nummular eczema, a chronic dermatitis characterized by coin-shaped lesions, was first documented in 1857. However, its pathophysiological characteristics are still not well known. To investigate differences in the regulation of the desquamation process in the stratum corneum of lesional and nonlesional skin of patients with nummular eczema and healthy control subjects, tape-stripped stratum corneum samples from patients with nummular eczema and healthy volunteers were analysed using immunofluorescence staining and western blot analysis. In the nummular eczema lesional skin, expression of desmoglein-1, desmocollin-1, and corneodesmosin exhibited a disorganized, dense or partially diffuse non-peripheral pattern with increased intensity, compared with the peripheral patterns observed in healthy or nonlesional skin, suggesting the impaired desquamation process in nummular eczema. Furthermore, although the expression of the desquamation-related serine proteases, kallikrein-related peptidase 7 and 5, was increased in nummular eczema lesional skin, the immunofluorescence staining of lympho-epithelial Kazal-type-related inhibitor-1, an endogenous inhibitor of various kallikrein-related peptidases, and its fragments were significantly increased in the nummular eczema lesional skin, suggesting its contribution to the inhibition of corneodesmosomal degradation. Therefore, the increased detection of corneodesmosomal proteins in nummular eczema lesions may be due to the increased amount of the fragments of lympho-epithelial Kazal-type-related inhibitor-1, which could contribute to delayed desquamation.


Assuntos
Eczema , Pele , Humanos , Pele/patologia , Epiderme/metabolismo , Eczema/diagnóstico , Eczema/patologia , Calicreínas/metabolismo
2.
Heart Fail Rev ; 29(3): 729-737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381277

RESUMO

Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.


Assuntos
Insuficiência Cardíaca , Sistema Calicreína-Cinina , Calicreínas , Cininas , Sistema Renina-Angiotensina , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Sistema Calicreína-Cinina/fisiologia , Cininas/metabolismo , Calicreínas/metabolismo , Sistema Renina-Angiotensina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais , Bradicinina/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396898

RESUMO

The identification of surfaceome proteins is a main goal in cancer research to design antibody-based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically expressed in prostate cancer (PRAD), are currently in early clinical development. Using genomic information from different sources, we evaluated the immune microenvironment and genomic profile of prostate tumors with high expression of KLK2. KLK2 was specifically expressed in PRAD but it was not significant associated with Gleason score. Additionally, KLK2 expression did not associate with the presence of any immune cell population and T cell activating markers. A mild correlation between the high expression of KLK2 and the deletion of TMPRSS2 was identified. KLK2 expression associated with high levels of surface proteins linked with a detrimental response to immune checkpoint inhibitors (ICIs) including CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and the non-surface protein TRPM4. However, no association of these genes with an outcome in PRAD was observed. Finally, the expression of these genes in PRAD did not associate with an outcome in PRAD and any immune populations. We describe the immunologic microenvironment on PRAD tumors with a high expression of KLK2, including a gene signature linked with an inert immune microenvironment, that predicts the response to ICIs in other tumor types. Strategies targeting KLK2 with T cell engagers or antibody-drug conjugates will define whether T cell mobilization or antigen release and stimulation of immune cell death are sufficient effects to induce clinical activity.


Assuntos
Calicreínas , Neoplasias da Próstata , Receptores Odorantes , Humanos , Masculino , Genômica , Calicreínas/genética , Calicreínas/imunologia , Calicreínas/metabolismo , Proteínas de Neoplasias , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Tetraspaninas , Microambiente Tumoral/genética
4.
J Cell Sci ; 137(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206094

RESUMO

During early postnatal brain development, the formation of proper synaptic connections between neurons is crucial for the development of functional neural networks. Recent studies have established the involvement of protease-mediated modulations of extracellular components in both synapse formation and elimination. The secretory serine protease neuropsin (also known as kallikrein-8) cleaves a few transmembrane or extracellular matrix proteins in a neural activity-dependent manner and regulates neural plasticity. However, neuropsin-dependent proteolysis of extracellular components and the involvement of these components in mouse brain development are poorly understood. We have observed that during hippocampus development, expression of neuropsin and levels of full-length or cleaved fragments of the neuropsin substrate protein L1 cell adhesion molecule (L1CAM) positively correlate with synaptogenesis. Our subcellular fractionation studies show that the expression of neuropsin and its proteolytic activity on L1CAM are enriched at developing hippocampal synapses. Activation of neuropsin expression upregulates the transcription and cleavage of L1CAM. Furthermore, blocking of neuropsin activity, as well as knockdown of L1CAM expression, significantly downregulates in vitro hippocampal synaptogenesis. Taken together, these findings provide evidence for the involvement of neuropsin activity-dependent regulation of L1CAM expression and cleavage in hippocampal synaptogenesis.


Assuntos
Calicreínas , Molécula L1 de Adesão de Célula Nervosa , Animais , Camundongos , Hipocampo/metabolismo , Calicreínas/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Serina Proteases/metabolismo
5.
Am J Pathol ; 194(1): 121-134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918799

RESUMO

Endometriosis is a common benign gynecologic condition. Endometriosis lesions are associated with endometrial cell proliferation, migration, invasion, and neovascularization, while the specific molecular mechanisms are still elusive. Transcriptome sequencing has been used for the identification of diagnostic markers in endometriosis. Here, transcriptome profiling revealed that kallikrein-related peptidase 4 (KLK4) expression was up-regulated in ectopic endometrium (EC) tissues of patients with endometriosis. KLK4 mediates the degradation of extracellular matrix proteins, and its proteolytic activity activates many tumorigenic and metastatic pathways via tumor invasion and migration. Nevertheless, whether KLK4 serves as an important regulatory factor in endometriosis remains unclear. This study confirmed that KLK4 was highly expressed in ectopic endometrial stromal cells (EC-ESCs). KLK4 overexpression promoted proliferation and suppressed apoptosis of EC-ESCs, induced cell migration and invasion, and enhanced angiogenesis in vivo. Mechanistically, KLK4 overexpression mediated the protein cleavage of pro-brain-derived neurotrophic factor in EC-ESCs. Finally, brain-derived neurotrophic factor was a vital downstream substrate of KLK4 maintained the proliferation, metastasis, and pro-angiogenesis abilities and inhibited apoptosis of ESCs through a rescue study. Together, these findings demonstrate the promotive role of KLK4 in endometriosis development. In addition, the study provides a new insight that KLK4 might be a potential therapeutic target and prognostic marker for patients with endometriosis.


Assuntos
Endometriose , Feminino , Humanos , Fator Neurotrófico Derivado do Encéfalo , Movimento Celular , Proliferação de Células , Endometriose/patologia , Endométrio/patologia , Calicreínas/genética , Calicreínas/metabolismo , Células Estromais/metabolismo
6.
Cell Biol Int ; 48(4): 440-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115179

RESUMO

Kirsten rat sarcoma virus (KRAS) gene mutation is common in colorectal cancer (CRC) and is often predictive of treatment failure and poor prognosis. To understand the mechanism, we compared the transcriptome of CRC patients with wild-type and mutant KRAS and found that KRAS mutation is associated with the overexpression of a secreted serine protease, kallikrein-related peptidase 10 (KLK10). Moreover, using in vitro and in vivo models, we found that KLK10 overexpression favors the rapid growth and liver metastasis of KRAS mutant CRC and can also impair the efficacy of KRAS inhibitors, leading to drug resistance and poor survival. Further functional assays revealed that the oncogenic role of KLK10 is mediated by protease-activated receptor 1 (PAR1). KLK10 cleaves and activates PAR1, which further activates 3-phosphoinositide-dependent kinase 1 (PDK1)-AKT oncogenic pathway. Notably, suppressing PAR1-PDK1-AKT cascade via KLK10 knockdown can effectively inhibit CRC progression and improve the sensitivity to KRAS inhibitor, providing a promising therapeutic strategy. Taken together, our study showed that KLK10 promotes the progression of KRAS mutant CRC via activating PAR1-PDK1-AKT signaling pathway. These findings expanded our knowledge of CRC development, especially in the setting of KRAS mutation, and also provided novel targets for clinical intervention.


Assuntos
Neoplasias Colorretais , Receptor PAR-1 , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
7.
Biochem Biophys Res Commun ; 689: 149217, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37972446

RESUMO

The incidence and mortality rates of colorectal cancer (CRC) have significantly increased in recent years. It has been shown that early diagnosis of CRC improves the five-year survival of patients compared to late diagnosis, as patients with stage I disease have a five-year survival rate as high as 90 %. Through bioinformatics analysis, we identified Kallikrein 10 (KLK10), a member of the Kallikrein family, as a reliable predictor of CRC progression, particularly in patients with early-stage CRC. Furthermore, single-cell analysis revealed that KLK10 was highly expressed in tumor and partial immune cells. Analysis of the biological functions of KLK10 using the Kyoto encyclopedia of genes and genomes and gene ontology indicated that KLK10 plays a role in the proliferation and differentiation of cancer cells, along with the maintenance of tumor function and immune regulation, explicitly by T cells and macrophages. EdU cell proliferation staining, plate clone formation assay, and cell scratch assay demonstrated that KLK10 inhibition by siRNA affected the proliferation and migration of CRC cells. Cell cycle detection by flow cytometry demonstrated that KLK10 inhibition led to cell cycle arrest in the G1 phase. In addition, the proportion of M1 and M2 macrophages in 45 tumor specimens was analyzed by immunohistochemistry, the proportion of CD4+ T cells and CD8+ T cells in plasma was identified by flow cytometry, and their correlation with KLK10 was analyzed. The effects of KLK10 on T cells and macrophages were verified in independent cell experiments. The results revealed that KLK10 also activates CD4+ T cells, mediating M2-type macrophage polarization.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/patologia , Calicreínas/genética , Calicreínas/metabolismo
8.
Cell Biol Toxicol ; 39(6): 3219-3234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812360

RESUMO

Investigation on a competitive endogenous RNA (ceRNA) network attracted lots of attention due its function in cancer regulation. Here, we probed into the possible molecular mechanism of circSSPO/microRNA-6820-5p (miR-6820-5p)/kallikrein-related peptidase 8 (KLK8)/PKD1 network in the esophageal squamous cell carcinoma (ESCC). Following whole-transcriptome sequencing and differential analysis in collected ESCC tissue samples, circRNA-miRNA-mRNA regulatory network affecting ESCC was investigated. After interaction measurement among circSSPO/miR-6820-5p/KLK8/PKD1, their regulatory roles in ESCC cell functions in vitro and xenograft tumor growth and lung metastasis in vivo were analyzed. The bioinformatics prediction and sequencing results screened that circSSPO, miR-6820-5p, KLK8, and PKD1 were associated with ESCC development. In ESCC, miR-6820-5p was expressed at very low levels, while circSSPO, KLK8, and PKD1 were highly expressed. In vitro cell experiments further proved that circSSPO competitively inhibited miR-6820-5p to induce ESCC cell malignant properties. Moreover, knockdown of KLK8 or PKD1 inhibited ESCC cell malignant properties. circSSPO also promoted the tumorigenic and metastasis of ESCC through the upregulation of KLK8 and PKD1 expression in vivo. We found that circSSPO was an oncogenic circRNA that was significantly abundant in ESCC tissues and circSSPO exhibited an oncogenic activity in ESCC by elevating expression of KLK8 and PKD1 through suppressing miR-6820-5p expression.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Circular , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Calicreínas/genética , Calicreínas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Regulação para Cima/genética
9.
J Surg Res ; 292: 264-274, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37666089

RESUMO

INTRODUCTION: Endothelial injury is a major characteristic of sepsis and contributes to sepsis-induced multiple-organ dysfunction. In this study, we investigated the role of miR-107-3p in sepsis-induced endothelial injury. METHODS: Human umbilical vein endothelial cells (HUVECs) were exposed to 20 µg/mL of lipopolysaccharide (LPS) for 6-48 h. The levels of miR-107-3p and kallikrein-related peptidase 5 (KLK5) were examined. HUVECs were treated with LPS for 12 h and subsequently transfected with miR-107-3p inhibitor, KLK5 siRNA, or cotransfected with KLK5 siRNA and miR-107-3p inhibitor/negative control inhibitor. Cell survival, apoptosis, invasion, cell permeability, inflammatory response, and the Toll-like receptor 4/nuclear factor κB signaling were evaluated. In addition, the relationship between miR-107-3p and KLK5 expression was predicted and verified. RESULTS: LPS significantly elevated miR-107-3p levels, which peaked at 12 h. Conversely, the KLK5 level was lower in the LPS group than in the control group and was lowest at 12 h. MiR-107-3p knockdown significantly attenuated reductions in cell survival and invasion, apoptosis promotion, hyperpermeability and inflammation induction, and activation of the NF-κB signaling caused by LPS. KLK5 knockdown had the opposite effect. Additionally, KLK5 was demonstrated as a target of miR-107-3p. MiR-107-3p knockdown partially reversed the effects of KLK5 depletion in LPS-activated HUVECs. CONCLUSIONS: Our findings indicate that miR-107-3p knockdown may protect against sepsis-induced endothelial cell injury by targeting KLK5. This study identified a novel therapeutic target for sepsis-induced endothelial injury.


Assuntos
MicroRNAs , Sepse , Humanos , Apoptose/genética , Células Endoteliais da Veia Umbilical Humana , Calicreínas/genética , Calicreínas/metabolismo , Calicreínas/farmacologia , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo
10.
Immunohorizons ; 7(6): 493-507, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358498

RESUMO

In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.


Assuntos
Calicreínas , Linfócitos T , Animais , Camundongos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Adipócitos Bege , Linfócitos T/metabolismo , Calicreínas/metabolismo , Glicemia/metabolismo , Resistência à Insulina
11.
Int J Cancer ; 153(4): 867-881, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37139608

RESUMO

We aimed to study mRNA levels and prognostic impact of all 15 human kallikrein-related peptidases (KLKs) and their targets, proteinase-activated receptors (PARs), in surgically treated prostate cancer (PCa). Seventy-nine patients with localized grade group 2-4 PCas represented aggressive cases, based on metastatic progression during median follow-up of 11 years. Eighty-six patients with similar baseline characteristics, but no metastasis during follow-up, were assigned as controls. Transcript counts were detected with nCounter technology. KLK12 protein expression was investigated with immunohistochemistry. The effects of KLK12 and KLK15 were studied in LNCaP cells using RNA interference. KLK3, -2, -4, -11, -15, -10 and -12 mRNA, in decreasing order, were expressed over limit of detection (LOD). The expression of KLK2, -3, -4 and -15 was decreased and KLK12 increased in aggressive cancers, compared to controls (P < .05). Low KLK2, -3 and -15 expression was associated with short metastasis-free survival (P < .05) in Kaplan-Meier analysis. PAR1 and -2 were expressed over LOD, and PAR1 expression was higher, and PAR2 lower, in aggressive cases than controls. Together, KLKs and PARs improved classification of metastatic and lethal disease over grade, pathological stage and prostate-specific antigen combined, in random forest analyses. Strong KLK12 immunohistochemical staining was associated with short metastasis-free and PCa-specific survival in Kaplan-Meier analysis (P < .05). Knock-down of KLK15 reduced colony formation of LNCaP cells grown on Matrigel basement membrane preparation. These results support the involvement of several KLKs in PCa progression, highlighting, that they may serve as prognostic PCa biomarkers.


Assuntos
Neoplasias da Próstata , Receptor PAR-1 , Masculino , Humanos , Prognóstico , Receptor PAR-1/genética , Calicreínas/genética , Calicreínas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/metabolismo , Antígeno Prostático Específico , RNA Mensageiro/genética
12.
BMC Musculoskelet Disord ; 24(1): 396, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202736

RESUMO

OBJECTIVE: Patients with rheumatoid arthritis (RA) have shown increased levels of neutrophils generating kallikrein-kinin peptides in blood which are potent mediators of inflammation. This study investigated the association between the bioregulation of kinin-mediated inflammation with the clinical, quality of life, and imaging characteristics (e.g. ultrasonography) of different arthritides. METHODS: Patients with osteoarthritis (OA, n = 29), gout (n = 10) and RA (n = 8) were recruited and screened for clinical symptoms, quality of life, and ultrasonographical assessment of arthritis. Blood neutrophils were assessed for the expression of bradykinin receptors (B1R and B2R), kininogens and kallikreins by immunocytochemistry with visualization by bright field microscopy. Levels of plasma biomarkers were measured by ELISA and cytometric bead array. RESULTS: Quality of life (SF-36 domains and summary scores; including pain; and, HAQ) was similar across OA, gout and RA patients; with the exception of worse physical functioning scores between OA and gout patients. Synovial hypertrophy (on ultrasound) differed between groups (p = 0.001), and the dichotomised Power Doppler (PD) score of greater than or equal to 2 (PD-GE2) was marginally significant (p = 0.09). Plasma IL-8 were highest in patients with gout followed by RA and OA (both, P < 0.05). Patients with RA had higher plasma levels of sTNFR1, IL-1ß, IL-12p70, TNF and IL-6, compared to OA and gout patients (all, P < 0.05). Patients with OA had higher expression of K1B and KLK1 on blood neutrophils followed by RA and gout patients (both, P < 0.05). Bodily pain correlated with B1R expression on blood neutrophils (r = 0.334, p = 0.05), and inversely with plasma levels of CRP (r = -0.55), sTNFR1 (r = -0.352) and IL-6 (r = -0.422), all P < 0.05. Expression of B1R on blood neutrophils also correlated with Knee PD (r = 0.403) and PD-GE2 (r = 0.480), both P < 0.05. CONCLUSIONS: Pain levels and quality of life were similar between patients with OA, RA and gout with knee arthritis. Plasma inflammatory biomarkers and B1R expression on blood neutrophils correlated with pain. Targeting B1R to modulate the kinin-kallikrein system may pose as a new therapeutic target in the treatment of arthritis.


Assuntos
Artrite Reumatoide , Gota , Osteoartrite , Humanos , Calicreínas/análise , Calicreínas/metabolismo , Cininas/análise , Cininas/metabolismo , Interleucina-6/metabolismo , Qualidade de Vida , Artrite Reumatoide/diagnóstico , Osteoartrite/metabolismo , Gota/diagnóstico por imagem , Biomarcadores/metabolismo , Fenótipo , Dor/metabolismo , Líquido Sinovial/metabolismo
13.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176127

RESUMO

Kallikrein-related peptides (KLKs) form an evolutionally conserved subgroup of secreted serine proteases that consists of 15 members (KLK1-15). Previous studies have shown that KLKs regulate diverse biological processes, but the clinical significance of KLKs remains largely unclear in human breast cancers. We examined the expression profile of 15 KLK genes in breast carcinomas using microarray data. Next, we immunolocalized KLK12 in 140 breast carcinomas and evaluated its clinical significance. Subsequently, we examined the effects of KLK12 on proliferation and migration in breast cancer cell lines. From microarray analyses, it turned out that KLK12 was the most strongly associated with low-grade malignancy in breast carcinomas among the 15 KLK members. Immunohistochemical KLK12 status was positively associated with ER and PR status, while it was inversely associated with stage, pathological T factor, lymph node metastasis, and distant metastasis. Prognostic analyses demonstrated that KLK12 was a favorable prognostic factor for both disease-free and breast cancer-specific survival of the patients. Furthermore, the knockdown of KLK12 significantly increased cell proliferation activity and cell migration of breast cancer cells. These results suggest that KLK12 has antitumorigenic effects associated with proliferation and migration and immunohistochemical KLK12 status as a potent favorable prognostic factor in breast carcinoma patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , Calicreínas/genética , Calicreínas/metabolismo
14.
Cell Death Dis ; 14(4): 278, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076499

RESUMO

Neuronal apoptosis has been well-recognized as a critical mediator in the pathogenesis of depressive disorders. Tissue kallikrein-related peptidase 8 (KLK8), a trypsin-like serine protease, has been implicated in the pathogenesis of several psychiatric disorders. The present study aimed to explore the potential function of KLK8 in hippocampal neuronal cell apoptosis associated with depressive disorders in rodent models of chronic unpredictable mild stress (CUMS)-induced depression. It was found that depression-like behavior in CUMS-induced mice was associated with hippocampal KLK8 upregulation. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency attenuated CUMS-induced depression-like behaviors and hippocampal neuronal apoptosis. In HT22 murine hippocampal neuronal cells and primary hippocampal neurons, adenovirus-mediated overexpression of KLK8 (Ad-KLK8) was sufficient to induce neuron apoptosis. Mechanistically, it was identified that the neural cell adhesion molecule 1 (NCAM1) may associate with KLK8 in hippocampal neurons as KLK8 proteolytically cleaved the NCAM1 extracellular domain. Immunofluorescent staining exhibited decreased NCAM1 in hippocampal sections obtained from mice or rats exposed to CUMS. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency largely prevented CUMS-induced loss of NCAM1 in the hippocampus. Both adenovirus-mediated overexpression of NCAM1 and NCAM1 mimetic peptide rescued KLK8-overexpressed neuron cells from apoptosis. Collectively, this study identified a new pro-apoptotic mechanism in the hippocampus during the pathogenesis of CUMS-induced depression via the upregulation of KLK8, and raised the possibility of KLK8 as a potential therapeutic target for depression.


Assuntos
Antígeno CD56 , Depressão , Hipocampo , Calicreínas , Animais , Camundongos , Ratos , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Camundongos Knockout , Ratos Transgênicos , Hipocampo/metabolismo , Hipocampo/patologia , Regulação para Cima , Depressão/metabolismo , Depressão/patologia , Neurônios/patologia , Apoptose , Biomimética , Calicreínas/metabolismo , Antígeno CD56/metabolismo
15.
Neurochem Res ; 48(9): 2645-2659, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37067738

RESUMO

Axonal injury and demyelination occur in demyelinating diseases, such as multiple sclerosis, and the detachment of myelin from axons precedes its degradation. Paranodes are the areas at which each layer of the myelin sheath adheres tightly to axons. The destruction of nodal and paranodal structures during inflammation is an important pathophysiology of various neurological disorders. However, the underlying pathological changes in these structures remain unclear. Kallikrein 6 (KLK6), a serine protease produced by oligodendrocytes, is involved in demyelinating diseases. In the present study, we intraperitoneally injected mice with LPS for several days and examined changes in the localization of KLK6. Transient changes in the intracellular localization of KLK6 to paranodes in the spinal cord were observed during LPS-induced systemic inflammation. However, these changes were not detected in the upper part of brain white matter. LPS-induced changes were suppressed by minocycline, suggesting the involvement of microglia. Moreover, nodal lengths were elongated in LPS-treated wild-type mice, but not in LPS-treated KLK6-KO mice. These results demonstrate the potential involvement of KLK6 in the process of demyelination.


Assuntos
Calicreínas , Esclerose Múltipla , Substância Branca , Animais , Camundongos , Axônios/metabolismo , Inflamação/metabolismo , Calicreínas/metabolismo , Lipopolissacarídeos/toxicidade , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Substância Branca/metabolismo
16.
FASEB J ; 37(4): e22861, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929047

RESUMO

Enamel is formed by the repetitive secretion of a tooth-specific extracellular matrix and its decomposition. Calcification of the enamel matrix via hydroxyapatite (HAP) maturation requires pH cycling to be tightly regulated through the neutralization of protons released during HAP synthesis. We found that Gpr115, which responds to changes in extracellular pH, plays an important role in enamel formation. Gpr115-deficient mice show partial enamel hypomineralization, suggesting that other pH-responsive molecules may be involved. In this study, we focused on the role of Gpr111/Adgrf2, a duplicate gene of Gpr115, in tooth development. Gpr111 was highly expressed in mature ameloblasts. Gpr111-KO mice showed enamel hypomineralization. Dysplasia of enamel rods and high carbon content seen in Gpr111-deficient mice suggested the presence of residual enamel matrices in enamel. Depletion of Gpr111 in dental epithelial cells induced the expression of ameloblast-specific protease, kallikrein-related peptidase 4 (Klk4), suggesting that Gpr111 may act as a suppressor of Klk4 expression. Moreover, reduction of extracellular pH to 6.8 suppressed the expression of Gpr111, while the converse increased Klk4 expression. Such induction of Klk4 was synergistically enhanced by Gpr111 knockdown, suggesting that proper enamel mineralization may be linked to the modulation of Klk4 expression by Gpr111. Furthermore, our in vitro suppression of Gpr111 and Gpr115 expression indicated that their suppressive effect on calcification was additive. These results suggest that both Gpr111 and Gpr115 respond to extracellular pH, contribute to the expression of proteolytic enzymes, and regulate the pH cycle, thereby playing important roles in enamel formation.


Assuntos
Hipomineralização do Esmalte Dentário , Receptores Acoplados a Proteínas G , Animais , Camundongos , Ameloblastos/metabolismo , Hipomineralização do Esmalte Dentário/genética , Hipomineralização do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Concentração de Íons de Hidrogênio , Calicreínas/metabolismo , Receptores Acoplados a Proteínas G/genética
17.
J Thromb Haemost ; 21(4): 814-827, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990522

RESUMO

BACKGROUND: Human serum albumin (HSA) is the most abundant plasma protein and is sensitive to glycation in vivo. The chronic hyperglycemic conditions in patients with diabetes mellitus (DM) induce a nonenzymatic Maillard reaction that denatures plasma proteins and forms advanced glycation end products (AGEs). HSA-AGE is a prevalent misfolded protein in patients with DM and is associated with factor XII activation and downstream proinflammatory kallikrein-kinin system activity without any associated procoagulant activity of the intrinsic pathway. OBJECTIVES: This study aimed to determine the relevance of HSA-AGE toward diabetic pathophysiology. METHODS: The plasma obtained from patients with DM and euglycemic volunteers was probed for activation of FXII, prekallikrein (PK), and cleaved high-molecular-weight kininogen by immunoblotting. Constitutive plasma kallikrein activity was determined via chromogenic assay. Activation and kinetic modulation of FXII, PK, FXI, FIX, and FX via in vitro-generated HSA-AGE were explored using chromogenic assays, plasma-clotting assays, and an in vitro flow model using whole blood. RESULTS: Plasma obtained from patients with DM contained increased plasma AGEs, activated FXIIa, and resultant cleaved cleaved high-molecular-weight kininogen. Elevated constitutive plasma kallikrein enzymatic activity was identified, which positively correlated with glycated hemoglobin levels, representing the first evidence of this phenomenon. HSA-AGE, generated in vitro, triggered FXIIa-dependent PK activation but limited the intrinsic coagulation pathway activation by inhibiting FXIa and FIXa-dependent FX activation in plasma. CONCLUSION: These data indicate a proinflammatory role of HSA-AGEs in the pathophysiology of DM via FXII and kallikrein-kinin system activation. A procoagulant effect of FXII activation was lost through the inhibition of FXIa and FIXa-dependent FX activation by HSA-AGEs.


Assuntos
Calicreínas , Calicreína Plasmática , Humanos , Calicreínas/metabolismo , Calicreína Plasmática/metabolismo , Cininas , Fator XIIa/metabolismo , Cininogênio de Alto Peso Molecular/metabolismo , Pré-Calicreína/metabolismo , Albuminas , Produtos Finais de Glicação Avançada
18.
Int. j. morphol ; 41(1): 210-215, feb. 2023. ilus
Artigo em Inglês | LILACS | ID: biblio-1430505

RESUMO

SUMMARY: Apocrine glands are sweat glands that are located in the skin of the dog. Anal sac apocrine, circunanal apocrine, and mammary glands are considered modified apocrine structures, and there are about nine possible types of neoplasms and other tumors in the apocrine glands of the dog and cat, including cysts, adenoma, carcinoma, and adenocarcinoma. Thus, it is important to provide new markers to characterize these glands to improve the histopathological diagnosis. In this article, we describe the distribution of kallikrein- related peptidases 5, 7, 8, and 10 in the normal apocrine glands of the dog's skin. These proteases have been shown to play a fundamental role in the homeostasis of the human skin barrier but have been scarcely studied in canine skin.


Las glándulas apocrinas son glándulas sudoríparas que se encuentran en la piel del perro. Las glándulas apocrinas del saco anal, apocrinas circunanales y mamarias se consideran estructuras apocrinas modificadas, y existen alrededor de nueve tipos posibles de neoplasias y otros tumores en las glándulas apocrinas del perro y el gato, incluidos quistes, adenoma, carcinoma y adenocarcinoma. Por lo tanto, es importante proporcionar nuevos marcadores para caracterizar estas glándulas para mejorar el diagnóstico histopatológico. En este artículo, describimos la distribución de las peptidasas 5, 7, 8 y 10 relacionadas con la calicreína en las glándulas apocrinas normales de la piel del perro. Se ha demostrado que estas proteasas desempeñan un papel fundamental en la homeostasis de la barrera de la piel humana, pero apenas se han estudiado en la piel canina.


Assuntos
Animais , Cães , Glândulas Apócrinas/metabolismo , Glândulas Apócrinas/química , Calicreínas/análise , Calicreínas/metabolismo , Pele , Imuno-Histoquímica
19.
Br J Dermatol ; 188(1): 100-111, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36689511

RESUMO

BACKGROUND: Mendelian disorders of cornification (MeDOC) are a group of heterogeneous genodermatoses with different genetic bases. The pathogenesis of a substantial group of MeDOC remains to be elucidated. OBJECTIVES: To identify a new causative gene and the pathogenesis of a previously undescribed autosomal-dominant cornification disorder. METHODS: Whole-exome sequencing was performed in three families with the novel cornification disorder to identify the disease-causing variants. As the variants were located around the signal peptide (SP) cleavage site of a kallikrein-related peptidase, SP cleavage, subcellular localization and extracellular secretion of the variants were evaluated in eukaryotic overexpression systems by Western blotting or immunocytochemistry. Then the trypsin-like and chymotrypsin-like proteolytic activity of the peptidase and degradation of its catalytic substrate were assayed using the patients' stratum corneum (SC) samples. The morphology of the lamellar bodies and corneodesmosomes (CDs) in the patients' SC was ultrastructurally examined. A mouse model harbouring the equivalent variant was constructed and evaluated histologically. RESULTS: We identified two heterozygous variants affecting Gly50 in kallikrein-related peptidase (KLK)11 in a familial case and two sporadic cases with the new disorder, which is characterized by early-onset ichthyosiform erythroderma or erythrokeratoderma. KLK11 belongs to the family of kallikrein-related peptidases participating in skin desquamation by decomposing CDs, a process essential for shedding of the SC. In vitro experiments demonstrated that the variants perturbed the SP cleavage of KLK11, leading to subcellular mislocalization and impaired extracellular secretion of the KLK11 Gly50Glu variant. Both trypsin-like and chymotrypsin-like proteolytic activities were significantly decreased in the patients' SC samples. Reduced proteolysis of desmoglein 1 and delayed degeneration of CDs were detected in patients' SC, indicating delayed skin desquamation. Consistently, the patients showed a thickened, dense SC, indicating abnormal skin desquamation. Mice harbouring the homozygous c.131G>A (p.Gly44Glu) Klk11 variant, which is equivalent to KLK11 c.149G>A (p.Gly50Glu) in humans, exhibited hyperkeratosis and abnormal desquamation, partially recapitulating the phenotype. CONCLUSIONS: We provide evidence that variants at Gly50 affecting the SP cleavage of KLK11 cause a new autosomal-dominant cornification disorder with abnormal desquamation. Our findings highlight the essential role of KLKs in maintaining homeostasis of skin keratinization and desquamation.


Assuntos
Quimotripsina , Sinais Direcionadores de Proteínas , Humanos , Animais , Camundongos , Tripsina/metabolismo , Quimotripsina/metabolismo , Calicreínas/química , Calicreínas/metabolismo , Pele/metabolismo
20.
Exp Dermatol ; 32(2): 177-185, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321871

RESUMO

Skin surface pH has been identified as a key regulator of the epidermal homeostasis through its action on serine protease activity. These enzymes, like kallikreins (KLK), are responsible for the degradation of corneodesmosomes, the protein structures linking together corneocytes, and are regulated by Lympho-Epithelial Kazal-Type-related Inhibitor (LEKTI). KLK activity increases at pH levels higher than physiological. An increase in skin surface pH has been observed in patients suffering from skin diseases characterized by impaired barrier function, like atopic dermatitis. In this work, we introduce an agent-based model of the epidermis to study the impact of a change in skin surface pH on the structural and physiological properties of the epidermis, through the LEKTI-KLK mechanism. We demonstrate that a less acidic pH, compared to the slightly acidic pH observed in healthy skin, is sufficient to significantly affect the water loss at the surface and the amount of irritant permeating through the epidermis. This weakening of the skin barrier function eventually results in a more intense skin inflammation following exposure to an external irritant. This work provides additional evidence that skin surface pH and serine proteases can be therapeutic targets to improve skin barrier integrity.


Assuntos
Epiderme , Irritantes , Humanos , Epiderme/metabolismo , Calicreínas/metabolismo , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Inflamação/metabolismo , Concentração de Íons de Hidrogênio , Homeostase , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...